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Abstract
The use and the properties of the virial expansion are reviewed and speculations given
concerning possible future developments. Firstly an account is given of the methodologies used
for calculating the virial coefficients, both in isotropic and liquid crystalline phases. We then
consider the isotropic phase, looking at the radius of convergence of the series for one
component systems, mixtures and systems with attractive interactions. We next consider the
application of a virial analysis to disordered liquid crystalline phases (nematic and cubatic).
Finally, we speculate as to future interesting lines of research in this area, in particular the
possibility of applying the virial series to positionally ordered phases.
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1. Introduction

A powerful, systematic method for calculating the properties
of bulk matter is via a virial expansion—i.e., a property is
expressed as a power series in the density. The virial expansion
for the pressure, p, is given for a one component system [1–7]
by

βp = ρ +
∑

n=2

Bn (T )ρn . (1)

Here ρ is the number density and β = (kBT )−1, where T is
the temperature and kB is Boltzmann’s constant. The virial
coefficients, Bn(T ), depend on the temperature and the form
of the inter-molecular potential. Other properties may also
be expressed as a virial series, but here we shall concentrate
mostly on the pressure, though we will review work done on
expansions for liquid crystalline elastic constants in a later
section.

Questions that immediately arise are how one might
calculate the virial coefficients, when might one expect the
series to converge and whether this expansion is of practical
use. We firstly consider these questions for the isotropic phase
and then review the situation for anisotropic phases.

2. Calculating the virial coefficients

We firstly consider a one component, classical fluid in which
the particles interact via a pairwise additive potential, u (1, 2).
Here ‘1’ is short-hand for the positional and orientational co-
ordinates of particle 1 and a similar interpretation holds for ‘2’.
The Mayer function, f (1, 2), is then defined by

f (1, 2) = exp[−βu(1, 2)] − 1 (2)

and the nth virial coefficient, Bn, is given by the sum of all
cluster integrals corresponding to labelled irreducible f -bond
diagrams with n points [2–7]. Expressions for the first few
virials are easily written down, namely

B2 (T ) = − 1

2V �2

∫∫
f (1, 2) d1 d2 (3)

and

B3 (T ) = − 1

3V �3

∫∫
f (1, 2) f (1, 3) f (2, 3) d1 d2 d3 (4)

where V is the volume and, for linear molecules, � = 4π ,
whilst for non-linear molecules � = 8π2. After this, however,
the number of integrals required to calculate Bn rises rapidly
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with n—e.g. there are three distinct integrals needed for B4,
while for B9 there are 194 066 [8].

For sufficiently simple potentials of interaction, the lower
order virials may be calculated analytically. Thus the virials
up to B4 are known for hard spheres and indeed also for hard
hyper-spheres in d dimensions [9–15]. These virials have also
been studied in the limit of infinite dimension, where only
B2 and B3 are non-vanishing [16, 17]. Virials up to B7 have
also been calculated analytically for hard parallel squares and
cubes [18–22]. For hard convex bodies, there exist explicit
expressions for the second virial coefficient [23–27]. For hard
non-convex shapes the calculations are harder, though there
are analytical results for B2 for fused diatomics [28–31], a
special model of linear triatomics [30] and chains of tangent
hard spheres [32], where the orientationally dependent form
was also calculated. One may also analytically calculate the
virials up to B4 for hard spheres with square-well attractive
potentials of interaction [33] and up to B5 for parallel hard
squares and cubes with both Ising- and square-well attractive
potentials [34].

Even for simple potentials of interaction, however, the
high order virials need to be calculated numerically. An
exception is the Gaussian model, for which the Mayer f -
function is taken to be a Gaussian. This corresponds
to a spherically symmetric repulsive pair potential which
diverges logarithmically at small separations. This choice
permits considerable analytical progress, both for the one
component case [35], where nine virials have been calculated
in one to four dimensions, and for simple models of many
component fluids [36, 37], in which only unlike interactions
are considered. Here 13 virials have been calculated in two to
ten dimensions for a two component fluid and ten virials for a
three component system, again in two to ten dimensions.

Returning to more general potentials of interaction where
the mathematical techniques described above are inapplicable,
an important advance by Ree and Hoover [38] was to replace
the irreducible Mayer graphs with graphs in which every pair
of points was linked either by an f -bond or an e-bond, where

e(1, 2) = 1 + f (1, 2). (5)

Thus, for hard bodies, an f -bond means the two particles
must overlap, whilst an e-bond means the particles must not
overlap. This firstly significantly reduces the number of
distinct integrals to be calculated (81 564 for B9 [8]). Secondly,
for hard bodies, this formulation allows the virials to be
calculated via a straightforward Monte Carlo method, as any
given configuration of particles can contribute to at most one
Ree–Hoover diagram. Using such methods the first ten virial
coefficients have been calculated for hard discs, hard spheres
and for hyper-spheres up to dimension d = 9 [8, 39–56]

For virials up to B5, the Ree–Hoover Monte Carlo method
is as follows. Having placed particle 1 at the origin and at
a given orientation, particle 2 is repeatedly placed in random
positions and at random orientations until eventually it overlaps
particle 1. Random placements are then attempted for particle
3 until it is found to overlap particle 2. Doing this repeatedly
finally generates an overlapping chain of n-particles, where n is
the order of the virial one wishes to calculate. One then checks

for overlaps between all pairs of particles and, generally using
a look-up table, decides whether this configuration corresponds
to a Ree–Hoover graph. If it does, one accumulates the
Ree–Hoover weighting for this graph. One then generates a
new chain of overlapping particles and the whole procedure
is repeated. For virials of higher order than B5, not all
the Ree–Hoover graphs can be generated starting from a
linear overlapping chain, and other, branched chains must
also be used. A full discussion of the technicalities is given
in [8, 28, 41, 43, 45, 47, 55].

One may also estimate virial coefficients by fitting to
highly accurate equation of state simulation data. An example
of this is the study of the hard disc fluid, where estimates have
been made of B11–B15 [57].

The Monte Carlo method may also be readily applied to
aspherical hard bodies, and to date the first eight coefficients
have been reported for spheroids [47, 58–62], prolate sphero-
cylinders [47, 63–66] and truncated spheres [47, 67]. The
first six virials have been calculated for the hard Gaussian
overlap model [68–70] and the first five for hard oblate
sphero-cylinders [71–74] and hard diatomics [75–83]. The
first four virials have been calculated for hard models of
triatomics [82–84] and tetrahedral penta-atomics [85] and the
first three for sphero-cylinder dimers [86, 87].

One may also calculate the virials corresponding to
mixtures of hard particles using this method—hard sphere and
hard disc mixtures have been the object of much study with
up to seven virials calculated [47, 88–99]. Similarly, virials up
to B5 have been calculated for hard spheres with square-well
potentials [47].

For more general pair potentials, this Monte Carlo method
is more troublesome to implement. It is no longer the case,
in general, that a given configuration of particles corresponds
to only one Ree–Hoover graph. Numerical integration of the
irreducible Mayer graphs has yielded the first five virials for
Lennard-Jones particles [100–104], the first four virials for a
two-centre Lennard-Jones model with point quadrupoles [105]
and the first three virials for certain water models [106, 107].
An important new development, however, is the use of
importance sampling to calculate high order virials in these
cases. The basic idea here is to aim to calculate the ratio
of Bn for the desired system to Bn for a reference system,
typically hard spheres for which the virials are known. To
date the sixth virial has been calculated for Lennard-Jones
particles [108] and up to the seventh virial for various water
models [109, 110]. This method may also be used to calculate
the virial coefficients for flexible molecules, where one needs
to average over the conformations of all the particles in the
cluster.

In general, however, the potential of interaction in a
real fluid is not pairwise additive—one finds irreducible three
body and higher order contributions. This situation has been
relatively little studied and, to my knowledge, only carried out
to third virial level (see, e.g., [111–113]). Of particular note
is the work described in [113], where the triplet potential of
interaction is calculated at each point by ab initio methods,
rather than using an analytic form. This is an attractive
possibility for the modelling of real systems. It is also worth
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noting that the importance sampling methodology described
above is well suited for this type of investigation [112].

Finally, we very briefly consider systems in which the
nuclear motion is treated quantum mechanically rather than
classically, as has been the case considered so far. The second
virial may be calculated by Regge pole analysis [114], but
another, recent approach is to use a path integral methodology,
with the result that the calculation transforms into the
calculation of the second virial coefficient for two, flexible
ring polymers [115–117]. One obtains the exact quantum
mechanical result in the limit of a large number of beads
in the polymer ring. Such calculations allow one also to
incorporate exchange effects (i.e. to obtain both fermionic
and bosonic virial coefficients). A practical question here is
what form to use for the inter-particle pair potential, for most
commonly used pair potentials have been parameterized with
the assumption of classical behaviour. The most fundamental
solution would be to calculate the pair potential at each point
from ab initio calculations. There is no reason why quantum
virials of third or higher order may not be calculated using
the path integral approach, maybe combined with the use of
importance sampling.

3. Convergence and quality of predictions—isotropic
phase

We begin by considering one component hard body fluids, for
which the only phase transition is fluid–solid. Examples are
hard spheres (or, more generally, hyper-spheres in d dimen-
sions), but systems such as hard parallel cubes, hexagons and
triangles have also been studied. Very little is known rigor-
ously about the convergence properties of the virial series. A
lower bound has been established for the radius of convergence
of the series [118], but numerical studies indicate the true ra-
dius of convergence to be significantly greater than this. An
illustration of this is given in figure 1, where we compare the
performance of the virial series for hard spheres with a quasi-
exact equation of state due to Woodcock [119]. Increasing the
order of the virial series brings the equation of state curves ever
closer to simulation results and at the freezing packing fraction
of 0.49 the virial series, truncated at the B10 level, predicts a
compressibility factor that is in error by just 2%.

A still-unresolved question is whether the virial expansion
in the isotropic, fluid phase has anything to say about the
solid phase. One possibility is that the radius of convergence
of the isotropic virial series is the freezing density and that
it is impossible to analytically continue the line beyond
this point [120]. Another possibility is that the radius of
convergence of the isotropic fluid has nothing to do with the
freezing transition and that freezing corresponds to a direct
jump from a point on the isotropic equation of state to the
corresponding crystalline equation of state. It should be noted
that in two dimensions the situation is complicated by the
possible existence of a hexatic phase in-between the fluid and
solid phases [121], thus leading to even more possible radii of
convergence of the isotropic virial series.

Given the lack of rigorous results, one must resort to
numerical studies to attempt to resolve these questions. In what

Figure 1. Plot of the compressibility factor, Z = βp/ρ, against
packing fraction, η, for hard spheres. The solid line is a quasi-exact
equation of state [119], while the other lines correspond to truncated
virial expansions. The bottom curve corresponds to truncation at B2,
the next curve up corresponds to B3 and so on until the top curve is
reached, which corresponds to truncation at B10.

follows it must be remembered that the analysis is based on
knowledge of relatively few coefficients in the series, so the
conclusions must necessarily be somewhat tentative.

For both hard spheres and hard discs (and, indeed, for
hyper-spheres in four dimensions), all the virials calculated
so far are positive. In five or more dimensions, negative
virials appear. Ten virials have been explicitly calculated in
these cases and, for hard discs, virials up to B15 have been
estimated by fitting to simulation equation of state data. For
one dimensional hard rods, there is no phase transition and all
the virials are known and are positive [122]. In this case the
radius of convergence is the density of closest packing, which
is a packing fraction of one. For discs and spheres, previous
Levin [123] and Padé [124] analyses based on the available
coefficients (seven and eight respectively) predicted the radius
of convergence of the series to be governed by a pole at a real,
positive density, numerically close to the density of closest
packing. It is also possible, however, to analyse the behaviour
of a series using the ratio test [125]. The latest analysis on
the convergence of the virial series for hyper-spheres, making
use of the first ten virials, is given in reference [55]. This also
presents an excellent review of research done to date on these
systems. Using a variety of methods, these authors found that
in two dimensions there is a positive pole near the density of
closest packing. In three, four and five dimensions it proved
very difficult to pin down the position or nature of the dominant
pole. As often seems to be the case, more coefficients are
needed to numerically establish the convergence properties of
the virial series in this important, three dimensional case. For
six dimensions and higher, the analysis indicated the dominant
pole was at a real, negative density.

For parallel hard cubes B6 and B7 are negative. To my
knowledge the higher virials have not been calculated and we
do not have the same degree of analysis for the virial series in
this case as we do for hard hyper-spheres.

If we now turn to one component systems of aspherical
particles, the phase diagram is richer, with the possibility of
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liquid crystalline phases and plastic solids, all of which could,
in principle, have an influence on the properties of the isotropic
virial series. To date, virials up to B6 have been published
for a range of hard Gaussian overlap models and virials up to
B7 have been published for a set of hard spheroids, sphero-
cylinders and truncated hard spheres (these are spheres with
upper and lower caps symmetrically removed, so the resulting
shape is disc-like with a curved rim). We have recently
calculated B8 as well for these latter cases.

For both prolate and oblate spheroids (with aspect ratios
in the range 1/3 to 3), the situation resembles hard spheres.
All the virials are positive and a Padé analysis indicates a
radius of convergence near the density of closest packing.
Numerically, this corresponds to a real, positive pole. For
more aspherical shapes, however, negative virials appear and
the radius of convergence moves to lower packing fractions.
A Padé analysis indicates that the radius of convergence
corresponds to either a real, negative pole (prolate spheroids)
or a pair of complex conjugate poles (oblate spheroids), both of
which would be expected to lead to a series containing negative
coefficients. Simply plotting the equation of state for various
levels of truncation of the virial series shows that the various
curves start to fan out at ever lower packing fractions as the
particles become more aspherical.

The most recent analysis for spheroids is given in
reference [62]. For spheroids with aspect ratios either less
than 1/2.75 or greater than 2.75, the isotropic phase becomes
nematic upon increasing the pressure. The available numerical
analysis suggests that for significantly aspherical shapes,
where the radius of convergence for the isotropic virial series
is substantially less than close packing density, the radius
of convergence is close to the isotropic–nematic co-existence
density as observed by simulation. As the pole controlling
the convergence would not appear to be at a real, positive
density, it would be hard to claim any physical relation between
the radius of convergence and the onset of the nematic phase
transition. Nevertheless, this observation, if true, is important.
As discussed later on, one may wish to calculate the virial
series in both the isotropic and nematic phases and then use
these two equations of state to locate the position of the
transition (i.e. by equating pressures and chemical potentials).
If this procedure is going to converge to the correct transition
densities, one does require the isotropic virial series to be
convergent in this density range.

The hard Gaussian overlap model [70] gives results which
are very similar to those found for spheroids. Once the particles
deviate significantly from a spherical shape one finds negative
virial coefficients and that the radius of convergence decreases
the more aspherical the particles become. The Padé analysis
again suggests that the radius of convergence is determined
by a pair of complex conjugate poles for significantly oblate
shapes and a negative pole for prolate shapes. It was further
noted that the 3/3 Padé approximant gave results in good
agreement with Monte Carlo simulation.

Turning now to hard sphero-cylinders [62], the situation
is less thoroughly studied but the general conclusions would
appear to be similar. If the length of the cylinder is denoted
by L and the diameter by D, then all the virials up to B7 are

positive for L/D � 3.2, but negative coefficients appear for
more elongated shapes, leading to a radius of convergence less
than the density of closest packing. For cut spheres [62], with
diameter D and thickness L, the virials up to B7 are positive
for L/D � 0.3, but for more oblate shapes again negative
virials set in and the radius of convergence, in terms of packing
fraction, drops from the value at closest packing.

In general the conclusion is that the more aspherical the
particle, the more negative virial coefficients tend to turn up
and the smaller is the radius of convergence in terms of packing
fraction. Numerically, however, there seems a good chance that
the isotropic series converges up to the density at which there
is a transition to a liquid crystalline phase.

When the particles are not hard, the virial coefficients
depend on the temperature, so one may ask how the radius of
convergence might depend on temperature. When attractive
forces are also present, then one may find a liquid–gas
transition as well as the solid–fluid transition mentioned above,
so it is interesting to ask how the virial series fares at sub-
critical, critical and super-critical temperatures. Formally,
the virial series close to the critical point ought to contain
information about the non-classical critical exponents, though
all the indications to date are that one needs to carry out the
expansion to extremely high order to see any signs of this.

Ree and Hoover [34] calculated the first five virials for
parallel squares and cubes with both Ising-well and square-
well attractive potentials and studied the behaviour of the series
near the critical point. They found that, although the predicted
critical pressure (Pc), volume (Vc) and temperature (Tc) all
changed significantly as one altered the number of virials in
the series, the product PcVc remained remarkably constant,
leading them to surmise that the virial series was convergent
at the critical point.

The first five virials have also been calculated for hard
spheres with a square-well attractive potential [47], but one
would hesitate to draw any conclusions about convergence with
so few terms. It is worth noting in passing that it is extremely
hard to calculate virial coefficients in the vicinity of the critical
temperature to good accuracy, as there is an extraordinary
degree of cancellation between the Ree–Hoover graphs under
these conditions.

The best characterized system so far is the Lennard-Jones
fluid, for which the first seven virials have been calculated as
a function of temperature [108, 126]. The reduced tempera-
ture is defined by T ∗ = kBT/ε, where ε is the depth of the
Lennard-Jones potential, and the reduced density is desired by
ρ∗ = σ 3ρ, where σ is the distance at which the potential is
zero. For a sub-critical temperature of 1.0, the virial series ap-
pears to be converging up to the spinodal density of 0.092, but
past this density the high order terms make significant contri-
butions to the pressure and it is not clear whether the series is
converging or not. Here all the coefficients are negative except
for B3. At a near-critical temperature of 1.3, the situation is
similar—there is apparent convergence up to the critical den-
sity. At a super-critical temperature of 2.0, the series appears
to converge up to a density of 0.3, though after this the high
order virials again contribute significantly and convergence is
uncertain. At this temperature a B7 series agrees well with sim-
ulation out to a density of 0.8, but more virials are needed to
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check whether or not this is simply fortuitous. At present it
seems the most one can say is that for sub-critical temperatures
the virial series appears to converge up to the spinodal density,
even when the temperature is close to critical.

We turn now to mixtures, where one has the possibility
of fluid–fluid demixing. Again one may ask whether
the virial series can predict such transitions and about the
radius of convergence. The best characterized systems here
are the Gaussian model studies by Baram, Maddox and
Rowlinson [35–37]. Their two component system assumed
no interaction between like particles, but the Mayer function
describing unlike interactions took on a Gaussian form. They
calculated 13 virials in a dimensionality, d , ranging from
two to ten. They found a demixing transition and carefully
analysed the series so as to extract the critical exponent of
the susceptibility. For d � 4, their results were in accord
with classical values of this exponent. For d = 3, the
results suggested a non-classical value for this exponent, but
the extrapolation was considerably less robust than in higher
dimensions and the best estimate had a rather large error bar.
For d = 2, the extrapolation procedure gave no conclusive
result at all. The somewhat depressing conclusion was that
many more virials (up to the order of 20 in three dimensions)
would be needed to get convincing results for the system’s
critical behaviour.

The same authors also treated a ternary mixture, again
with no like–like interactions, and with the Mayer function
for unlike pairs all having an identical Gaussian form. This
system was found to exhibit tri-critical points. Ten virials were
calculated in dimensionalities two to ten and the evidence was
strongly that for d � 4 the tri-critical points were ‘normal’ or
asymmetrical. For d = 3 the situation was less clear, but the
evidence was still in favour of this asymmetrical scenario. For
d = 2, however, there appeared to be a single ‘anomalous’
tri-critical point. As in the two component case, the results in
lower dimensions were not as convincing as those in higher
dimensions, and again, presumably, many more virials would
be needed to completely settle the issue.

The best studied ‘realistic’ binary system is that of a
mixture of additive hard spheres. A long standing issue has
been whether a hard sphere mixture could exhibit a fluid–
fluid phase transition. Certain integral equation approaches
predicted that such a transition would occur when the ratio
of the diameter of a small sphere to that of a large sphere, λ,
was around 0.1. Technically, this is an extremely challenging
system for simulation, and strictly speaking the existence or
otherwise of this transition has not been established. The
general consensus, however, is that this transition does occur
but only in a meta-stable region—thermodynamically, the
system solidifies prior to this transition.

For mixtures, the nth virial coefficient is composition
dependent, i.e.

Bn =
n∑

r=0

(
n
r

)
Bn (r, n − r) xr (1 − x)n−r (6)

where x is the mole fraction of component 1,
(

n
r

)
is

the combinatorial factor and Bn(r, n − r) is a partial virial

coefficient. These coefficients have been calculated for a range
of diameter ratios up to n = 6 and up to n = 7 when λ =
0.1 [47, 99]. All the partial virial coefficients calculated thus
far are positive. The conclusions are that a demixing transition
is predicted for λ = 0.1, but at an overall packing fraction that
is higher than the freezing density. The predicted consolute
point, however, converges very sluggishly on increasing the
number of virial coefficients, so these conclusions cannot be
taken to be overly definitive. This number of coefficients
calculated is also far too small to make any estimates about
critical exponents.

One may also consider the case of non-additive spheres,
where the pair contact distance, σ12, is given by

σ12 =
(

σ11 + σ22

2

)
(1 − 
) (7)

where σ11 and σ22 are the diameters of spheres 1 and 2
respectively. For 
 = 0.1 and λ = 0.1, negative partial
virials make an appearance for n = 6 [99], and, as is normally
the case in such situations, an effect of this is to worsen the
convergence properties of the virial series. Thus the equation
of state of these non-additive spheres appears to converge less
rapidly than the corresponding system of additive spheres.

High-level virials would not appear to have been
calculated for other binary mixtures, so there is little as yet
to report on the effect of attractive forces on the properties of
the virial expansion for such mixtures.

4. Convergence and quality of predictions—
anisotropic phases

The virial series may also be applied to inhomogeneous phases.
For a one component system, it takes the form [127]

−β� = β A0 + β

∫
ρ(1) [Vext(1) − μ] d1

+
∫

ρ(1)
{
ln

[
�3ρ(1)

] − 1
}

d1 +
∑

n=2

Vn (T )

n − 1
. (8)

Here � is the grand potential, A0 contains the non-translational
contributions to the ideal gas Helmholtz energy (i.e. arising
from rotations, vibrations and electronic excitations), μ is the
chemical potential, Vext is the external potential, � is the
de Broglie thermal wavelength and ρ(1) is the one particle
density, dependent in general both on position and orientation.
‘1’ is shorthand for the position and orientation of particle 1.
The coefficient Vn is given by

Vn =
∫

Bn (1, 2, . . . , n) ρ(1)ρ(2) . . . ρ(n) d1 d2 . . . dn (9)

where Bn (1, 2, . . . , n) is the nth virial coefficient for n
particles with fixed positions and orientations. Vn is given by
the same Mayer or Ree–Hoover graphs as described earlier,
except that the densities corresponding to the field points now
depend on both position and orientation. One may obtain ρ(1)

as that function which minimizes equation (9) and, given this,
one may calculate all thermodynamic properties.

To date, most high-level virial work has concentrated
on positionally disordered liquid crystalline phases (mainly
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nematic but also cubatic) in the absence of an external field.
In this case

ρ(1) = ρ f (�) (10)

where f (�) is the one particle orientational distribution
function and � denotes the particle orientation. In this case we
can carry out the integration over positions in equation (9), but
we still require an expression for the orientationally dependent
virial coefficients. Onsager instigated this methodology for
treating nematic phases and he obtained a theory for hard
sphero-cylinders by truncating the virial series at the B2

level [128]. He obtained an explicit expression for the
orientationally dependent B2 coefficient and then estimated the
location of the isotropic–nematic phase transition by making
use of a variational principle. This level of truncation turns out
to give exact results for very long rods, where the transition
occurs at such low densities that the higher order virials are
negligible. For finite rods and any type of disc, however,
the higher virials may not be neglected, though, as one may
imagine, the calculation of these terms is considerably harder
than the corresponding calculation in the isotropic phase.

The most fundamental approach is to expand these
orientationally dependent virial coefficients in terms of a
rotationally invariant angular basis set. For axially symmetric
molecules this entails products of spherical harmonics, whilst
for non-axially-symmetric cases Wigner functions are needed.
Almost all work to date has concentrated on the simpler
axially symmetric case [129–132], except for a third virial
calculation on bent-core molecules [88]. The coefficients
in these expansions must be calculated numerically, using
generalizations of the techniques used for calculated isotopic
virials. In the Monte Carlo procedure, for any configuration
of particles contributing to a Ree–Hoover graph, one must
accumulate a large set of functions involving the orientations
of all the particles. Details are given in [129–132].

An issue here is how complete the angular basis set must
be. A stringent test is that it should be large enough to give a
good prediction of the virial coefficients in the limit where all
the particles are aligned. The more aspherical the particles, the
more terms are needed to achieve this. For high order virials,
this becomes a real problem, as the higher order the virial
the more coefficients are required. Often these coefficients
can be relatively small and thus have a rather high associated
statistical error resulting from the Monte Carlo integration. For
significantly aspherical particles, one is thus in the position of
requiring a large number of small coefficients, all calculated to
good accuracy, if one is to be confident of having a sufficiently
high quality basis set to give confidence in one’s predictions.

In the existing work on hard spheroids, this methodology
has led to reliable coefficients for B3 for 1/10 � a/b � 10, for
B4 for 1/5 � a/b � 5 and for B5 for 1/3 � a/b � 3. Here a
and b are the lengths of the spheroid along and perpendicular
to the symmetry axis respectively. Sets of angular coefficients
have been calculated up to B8 level in all these cases, and,
given the fact that nematics are not perfectly orientationally
ordered, one may be able to get away with fewer coefficients
than required by the strict alignment test.

Using these data, the easiest thing to calculate is the
instability density—i.e. the density at which the isotropic

phase becomes mechanically unstable with respect to nematic
ordering. This calculation simply requires knowledge of
the lowest order, rank 2, coefficients, so the basis set
completeness question does not arise. In all cases studied, the
instability density converges rapidly with the level of virial
series used [129–132] and approaches the value predicted
by extrapolation of simulation results in the isotropic phase
(a/b = 3, 1/3, 5, 1/5).

The coefficients may also be used, however, to predict
both the equation of state of the nematic phase and the location
of the isotropic–nematic transition. In general, it would seem
that in all cases increasing the number of virials improves
the predicted nematic equation of state. This is plausible as
it is known that a system of perfectly aligned spheroids is
isomorphic to a system of hard spheres, so the perfectly aligned
coefficients are identical to those of hard spheres. Given
the good convergence properties of the latter, one may hope
for similarly good behaviour in the nematic. What is more
disappointing, however, is that the location of the predicted
isotropic–nematic transition does not show such monotonic
convergence. Indeed, for certain truncations, one cannot locate
a transition at all. In these cases, although one may find a stable
nematic phase at high density, as the density is lowered there
comes a point below which no nematic solution exists. It is
quite possible that this point comes at too high a density to
allow isotropic–nematic co-existence. More details are given
in [132].

The cases of sphero-cylinders and truncated spheres are
similar [133, 134]. The more aspherical the particles are,
the harder it is to obtain an angular basis set that yields the
correct aligned limit. The general conclusions about instability
densities and the properties of the nematic phase are similar to
those given for spheroids.

Simulation studies indicate that truncated hard spheres
with L/D = 0.2, where L is the thickness and D the
sphere diameter, undergo an isotropic–cubatic transition upon
increasing the pressure. In a cubatic phase the particles are
positionally disordered but exhibit an orientational ordering
with cubic symmetry. Virial expansions may also be used to
investigate the properties of this phase. If one simply truncates
the series at B2, the nematic phase is always favoured over
the cubatic. At higher levels of theory, however, the cubatic
phase is increasingly stabilized, and at the B5 level becomes
the predicted stable phase [131, 134]. The cubatic phase for
truncated spheres thus relies for its stability on many-body
packing effects and cannot be understood simply in terms of
pair excluded volumes.

Given the practical problems involved in calculating
orientationally dependent virials, it is not surprising that
the treatment of positionally ordered phases from a virial
expansion is harder still. It is worth mentioning, however,
that it is not difficult at all to use the virial series to calculate
the density at which the isotropic phase becomes unstable
with respect to positional ordering. For a strong first order
transition, such as fluid–crystal, the calculated density may
bear little relation to the density of the phase transition,
but for weaker first order transitions, such as isotropic–
smectic A, this calculation may prove useful and also give
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information as to the structure of the ordered phase close to
the phase transition. At high level, this approach has been
applied to spherocylinders, where a direct isotropic–smectic A
transition is observed by simulation, but the calculations were
unsuccessful in the sense that the isotropic–nematic instability
density occurred before any smectic-like instability [133]. We
also note that this type of analysis was used to investigate the
isotropic—biaxial nematic transition in systems of hard bent-
core molecules, going up to B3 level [87, 88]. In a biaxial
nematic, the particles are positionally disordered but all three
molecular axes exhibit orientational ordering. This was, to our
knowledge, the first prediction that molecules of this shape
would form this phase—a prediction that was later verified
experimentally (though we note that attractive forces doubtless
play important roles in these experimental systems).

An alternative approach to calculating the isotropic–
nematic transition from a virial expansion is to return to
Onsager’s original idea of making use of a trial function.
Onsager assumed the orientational distribution function to have
the form

f (�) = α

4π sinh α
cosh (α cos θ) (11)

where θ is the angle between the symmetry axis of the
particle and the nematic director (i.e. the direction in which
the particles point on average). α is a variational parameter
and is varied so as to minimize equation (8). A different
one parameter trial function was used in reference [135]. In
principle, one could improve the description by introducing
trial functions with more than one parameter, though the
amount of numerical calculation required would then increase
greatly.

Numerically, the problem is now significantly simplified.
One calculates each virial coefficient in the standard Ree–
Hoover manner for a sufficient number of α values
that one may smoothly interpolate between the calculated
values [135, 136]. For a given particle shape we thus have
in equation (9), Vn ≡ Vn(α). The best value of α is then
obtained by minimizing equation (8) with respect to α. The
disadvantage of this approach is naturally that of having
assumed a form for the orientational distribution function. The
great advantage, however, is that as α varies from zero to
infinity one goes smoothly between the isotropic and fully
aligned limits. The results therefore are exact in these two
cases and one does not experience the numerical difficulties
described above of dealing with incomplete angular basis sets.

Results have been obtained using this method up to B8

level. The qualitative conclusions are as before, but now the
description of the nematic and cubatic equations of state is
much improved. An example for the isotropic and nematic
phases for 3:1 prolate hard spheroids is shown in figure 2. At
co-existence, simulation [59] predicted the packing fractions
of the co-existing isotropic and nematic phases to be 0.507 and
0.517 respectively. The B8 truncation gives these values as
0.538 and 0.550.

One may ask, just as for the isotopic phase, for the radius
of convergence of the virial series in liquid crystalline phases.
The analysis is complicated by the fact that the Vn coefficients
that give the virial series for the pressure are integrals over

Figure 2. Plot of the reduced pressure, P∗ = βpv0, where v0 is the
spheroid volume, against packing fraction, η, for hard prolate
spheroids with aspect ratio 3:1. The points correspond to simulation
results [59] and the curves correspond to truncated virial expansions,
making use of the trial function, equation (11), to calculate nematic
phase properties. The bottom curve corresponds to truncation at B2,
the next curve up corresponds to B3 and so on until the top curve is
reached, which corresponds to truncation at B8.

the orientational distribution functions, and this function itself
is a function of density. To date very little is known about
this. Nematic-forming hard spheroids undergo a nematic–
crystal transition at high enough density, with no intervening
liquid crystalline phase. One’s guess in this case is that the
nematic virial series closely resembles the virial series for
isotropic hard spheres. This is because at high density the
spheroids will be highly aligned and the virial coefficients for
perfectly aligned spheroids are identical to the hard sphere
virials. The situation is more complicated for spherocylinders,
as here simulation indicates the occurrence of a nematic–
smectic A transition. Available data thus far give no indication
that the nematic virial series ‘knows’ about the location of
this transition, but to date these conclusions are tentative. A
similar situation occurs for truncated hard spheres, where a
nematic–columnar transition can occur for sufficiently thin
discs. As is always the case, one really does not have enough
virial coefficients to make reliable judgements about these
convergence issues.

Another set of important material properties of liquid
crystals is their elastic constants. In the nematic phase, these
elastic constants measure the Helmholtz energy penalty upon
introducing orientational distortions into the material. For the
case of hard spheroids and infinitely thin hard discs [137],
virial calculations have been carried out to eighth order,
making use of the Onsager trial function approach, and the
results appear to converge well to those obtained by simulation.
These coefficients are expected to show anomalous behaviour
in the vicinity of a nematic–smectic A transition, and it will
be interesting to investigate the convergence properties of this
series for the case of sphero-cylinders, for example, which
exhibit this transition.

Finally, we note that a theoretically simple model of
liquid-crystal formation may be obtained by studying systems
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where particles are only allowed to possess certain discrete
orientations. An example is that of hard rods, which may
only point along the three Cartesian axes. The isotropic phase
corresponds to equal numbers of rods pointing along each axis,
whilst a nematic phase would have a preponderance of rods
pointing along just one axis. Smectic, columnar and crystalline
phases may also be found in this model. The first seven
virials have been calculated for infinitely thin rods [138] and
the isotropic–nematic transition predicted accordingly, but to
my knowledge the virial approach has not been used to high
order for other cases. We similarly note the prediction on the
nematic–smectic A instability density in the case of perfectly
aligned cylinders [139], carried out to fourth order, with every
indication of good convergence. It is certainly possible to
pursue these models with considerably greater ease than the
freely rotating cases described previously, and maybe this
could generate new insights into the convergence properties of
the virial series for anisotropic phases.

5. Discussion and speculations

From a practical point of view, it would seem that for one
component hard core systems one may use the virial expansion
to calculate to a good level of accuracy the properties of
the isotropic and positionally disordered liquid crystalline
phases right up to the transition to the crystal (or the next
positionally ordered phase). Current numerical studies suggest
that for hyper-spheres in dimension greater than five and for
significantly aspherical particles the radius of convergence is
much less than the density of closest packing and that the pole
determining this quantity is either negative or complex. My
conclusion from this is that it is merely coincidence that the
radius of convergence for discs and possibly spheres is near
that of closest packing. It is hard to see what singles these
shapes out from the rest. Again, sticking my neck out, it would
seem to me that the available evidence is that the isotropic
virial series knows nothing about any impending first order
transition, be this to a crystalline, nematic or cubatic phase.
This is perhaps more clear-cut in studies of the isotropic–
nematic transition, where good quality predictions are obtained
by calculating coexistence between states on the isotropic and
nematic virial curves. My suspicion is that, given enough virial
coefficients, calculated for all the different phases, one can
construct a very accurate phase diagram, but that the radius
of convergence of each of the virial series in each phase has
no physical significance. The hope is simply that the virial
series in a given phase converges at high enough density that
the system may leap-frog onto the virial series corresponding
to the phase that comes next. These comments are clearly
highly speculative and it will be interesting to see whether
future research proves them right or wrong.

As for binary mixtures of hard core systems, only spheres
have been studied to any great degree, and while the general
equation of state appears to converge somewhat like that of
one component spheres, predictions as to demixing transitions
converge much more sluggishly. Much less work has been
done on systems with attractive forces, but studies to date
on the Lennard-Jones potential indicate that for sub-critical

temperatures the virial series appears to converge up to the
spinodal density, even when the temperature is close to critical.

Too few virials are known to make strict statements either
about the radius of convergence of the series or about the values
of critical exponents. It would be interesting to have more data
on systems with attractive forces to gain better insight into the
effect of the liquid–vapour transition on the virial series, as
very little is known about this. Importance sampling methods
will no doubt prove most useful in this regard. It would
similarly be interesting to have more data about mixtures and
to what extent the virial series can predict fluid–fluid demixing
transitions.

To really crack the convergence issues, however,
considerably more virials need to be calculated. The number
of Ree–Hoover graphs, however, increase extremely rapidly
with the order of virial and it is hard to imagine that one
can reach B20 or above (estimated variously as the level
at which hard sphere virials might be negative or the level
needed to estimate critical exponents for a binary mixture of
Gaussian model fluids) using these methods. One may be
able to resort to obtaining these coefficients from extremely
accurate simulation studies, but if one is seeking a direct means
of calculation computationally less intensive approaches will
simply have to be found.

Another area of new research is the use of the virial
expansion to predict the properties of positionally ordered
phases. While it is likely to prove incredibly difficult to
calculate high order positionally dependent virial coefficients,
it should be possible to make use of trial functions. While it
may sound a bit mad, it would be fascinating to see if one can
describe the hard sphere solid in terms of a virial expansion and
thereby calculate the full hard sphere phase diagram using such
methods. Similarly, one might be able to use similar methods
to predict the properties of ordered liquid crystalline phases.
In principle, one could also use trial functions to provide a
virial theory of interfaces and inhomogeneous fluids, but for
good accuracy one presumably needs a rather sophisticated
trial function, which may not be readily available.
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